Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 555
Filtrar
1.
Trop Anim Health Prod ; 56(2): 97, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38453787

RESUMO

Phytonutrients (PTN) namely saponins (SP) and condensed tannins (CT) have been demonstrated to assess the effect of rumen fermentation and methane mitigation. Phytonutrient pellet containing mangosteen, rambutan, and banana flower (MARABAC) and lemongrass including PTN, hence these plant-phytonutrients supplementation could be an alternative plant with a positive effect on rumen fermentation. The aim of this experiment was to evaluate the effect of supplementation of MARABAC and lemongrass (Cymbopogon citratus) powder on in vitro fermentation modulation and the ability to mitigate methane production. The treatments were arranged according to a 3 × 3 Factorial arrangement in a completely randomized design. The two experimental factors consisted of MARABAC pellet levels (0%, 1%, and 2% of the total substrate) and lemongrass supplementation levels (0%, 1%, and 2% of the total substrate). The results of this study revealed that supplementation with MARABAC pellet and lemongrass powder significantly improved gas production kinetics (P < 0.01) and rumen fermentation end-products especially the propionate production (P < 0.01). While rumen methane production was subsequently reduced by both factors. Additionally, the in vitro dry matter degradability (IVDMD) and organic matter degradability (IVOMD) were greatly improved (P < 0.05) by the respective treatments. MARABAC pellet and lemongrass powder combination showed effective methane mitigation by enhancing rumen fermentation end-products especially the propionate concentration and both the IVDMD and IVOMD, while mitigated methane production. The combined level of both sources at 2% MARABAC pellet and 2% lemongrass powder of total substrates offered the best results. Therefore, MARABAC pellet and lemongrass powder supplementation could be used as an alternative source of phytonutrient in dietary ruminant.


Assuntos
Cymbopogon , Suplementos Nutricionais , Animais , Fermentação , Técnicas In Vitro/veterinária , Metano/metabolismo , Nutrientes , Compostos Fitoquímicos/metabolismo , Pós/metabolismo , Propionatos/metabolismo , Rúmen/metabolismo
2.
Microbiol Spectr ; 12(4): e0405223, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38440971

RESUMO

"Candidatus Liberibacter asiaticus" (CLas), the causal agent of citrus Huanglongbing (HLB), is able to multiply to a high abundance in citrus fruit pith. However, little is known about the biological processes and phytochemical substances that are vital for CLas colonization and growth in fruit pith. In this study, CLas-infected fruit pith of three citrus cultivars ("Shatangju" mandarin, "Guanxi" pomelo, and "Shatian" pomelo) exhibiting different tolerance to CLas were collected and used for dual RNA-Seq and untargeted metabolome analysis. Comparative transcriptome analysis found that the activation of the CLas noncyclic TCA pathway and pathogenic-related effectors could contribute to the colonization and growth of CLas in fruit pith. The pre-established Type 2 prophage in the CLas genome and the induction of its CRISPR/cas system could enhance the phage resistance of CLas and, in turn, facilitate CLas population growth in fruit pith. CLas infection caused the accumulation of amino acids that were correlated with tolerance to CLas. The accumulation of most sugars and organic acids in CLas-infected fruit pith, which could be due to the phloem blockage caused by CLas infection, was thought to be beneficial for CLas growth in localized phloem tissue. The higher levels of flavonoids and terpenoids in the fruit pith of CLas-tolerant cultivars, particularly those known for their antimicrobial properties, could hinder the growth of CLas. This study advances our understanding of CLas multiplication in fruit pith and offers novel insight into metabolites that could be responsible for tolerance to CLas or essential to CLas population growth.IMPORTANCECitrus Huanglongbing (HLB, also called citrus greening disease) is a highly destructive disease currently threatening citrus production worldwide. HLB is caused by an unculturable bacterial pathogen, "Candidatus Liberibacter asiaticus" (CLas). However, the mechanism of CLas colonization and growth in citrus hosts is poorly understood. In this study, we utilized the fruit pith tissue, which was able to maintain the CLas at a high abundance, as the materials for dual RNA-Seq and untargeted metabolome analysis, aiming to reveal the biological processes and phytochemical substances that are vital for CLas colonization and growth. We provided a genome-wide CLas transcriptome landscape in the fruit pith of three citrus cultivars with different tolerance and identified the important genes/pathways that contribute to CLas colonization and growth in the fruit pith. Metabolome profiling identified the key metabolites, which were mainly affected by CLas infection and influenced the population dynamic of CLas in fruit pith.


Assuntos
Citrus , Liberibacter , Rhizobiaceae , Citrus/microbiologia , Rhizobiaceae/genética , Rhizobiaceae/metabolismo , Transcriptoma , Frutas/metabolismo , Metaboloma , Dinâmica Populacional , Compostos Fitoquímicos/metabolismo , Doenças das Plantas/microbiologia
3.
J Agric Food Chem ; 72(13): 6833-6849, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38517334

RESUMO

Although cholesterol plays a key role in many physiological processes, its dysregulation can lead to several metabolic diseases. Statins are a group of drugs widely used to lower cholesterol levels and cardiovascular risk but may lead to several side effects in some patients. Therefore, the development of a plant-based therapeutic adjuvant with cholesterol-lowering activity is desirable. The maintenance of cholesterol homeostasis encompasses multiple steps, including biosynthesis and metabolism, uptake and transport, and bile acid metabolism; issues arising in any of these processes could contribute to the etiology of cholesterol-related diseases. An increasing body of evidence strongly indicates the benefits of phytochemicals for cholesterol regulation; traditional Chinese medicines prove beneficial in some disease models, although more scientific investigations are needed to confirm their effectiveness. One of the main functions of cholesterol is bile acid biosynthesis, where most bile acids are recycled back to the liver. The composition of bile acid is partly modulated by gut microbes and could be harmful to the liver. In this regard, the reshaping effect of phytochemicals on gut microbiota has been widely reported in the literature for its significance. Therefore, we reviewed studies conducted over the past 5 years elucidating the regulatory effects of phytochemicals or herbal medicines on cholesterol metabolism. In addition, their effects on the recomposition of gut microbiota and bile acid metabolism due to modulation are discussed. This review aims to provide novel insights into the treatment of cholesterol dysregulation and the anticipated development of natural-based compounds in the near and far future.


Assuntos
Colesterol , Fígado , Humanos , Colesterol/metabolismo , Fígado/metabolismo , Metabolismo dos Lipídeos , Compostos Fitoquímicos/uso terapêutico , Compostos Fitoquímicos/metabolismo , Ácidos e Sais Biliares/metabolismo
4.
Chem Biodivers ; 21(4): e202301865, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38415909

RESUMO

In this study, phytochemical and biological activity studies supported by docking were carried out on a species of the genus Glaucium, a repository of isoquinoline alkaloids. The GC-MS (Gas Chromatography-Mass Spectrometry) method is used to characterize the isoquinoline alkaloids of Glaucium flavum Crantz. (Papaveraceae). G. flavum was collected from seven different regions of Türkiye (Antalya, Urla-Izmir, Mordogan-Izmir, Mugla, Assos-Canakkale, Karabiga-Canakkale, Giresun) and totally 17 compounds were detected by GC-MS. Glaucine was found to be the major constituent in the sample collected from Mugla, whereas isocorydine was recorded to be the principal alkaloid in other samples. Further fractionation studies on G. flavum collected from Antalya province in Southwestern Türkiye, yielded five major alkaloids (isocorydine 1, dihydrosanguinarine 2, glaucine 3, dehydroglaucine 4, protopine 5) which were characterized by spectroscopic methods. Anticholinesterase activities of the extracts and isolated alkaloids were also tested by in vitro Ellman method. The isolated compounds were also analyzed by a molecular docking technique to determine the binding orientations in the gorge of the active site of acetylcholinesterase (AChE) and a homology model of butyrylcholinesterase (BuChE). This is the first comparative investigation of the phytochemical composition and biodiversity of Glaucium flavum species growing in Türkiye.


Assuntos
Alcaloides , Antineoplásicos , Papaveraceae , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/metabolismo , Butirilcolinesterase/metabolismo , Simulação de Acoplamento Molecular , Acetilcolinesterase/metabolismo , Alcaloides/química , Isoquinolinas/farmacologia , Isoquinolinas/metabolismo , Antineoplásicos/metabolismo , Papaveraceae/química , Papaveraceae/metabolismo , Compostos Fitoquímicos/metabolismo , Extratos Vegetais/química
5.
Ann Pharm Fr ; 82(3): 373-391, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38354975

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is described by too much hepatic fat deposition causing steatosis, which further develops into nonalcoholic steatohepatitis (NASH), defined by necroinflammation and fibrosis, progressing further to hepatic cirrhosis, hepatocellular carcinoma, and liver failure. NAFLD is linked to different aspects of the metabolic syndrome like obesity, insulin resistance, hypertension, and dyslipidemia, and its pathogenesis involves several elements including diet, obesity, disruption of lipid homeostasis, and a high buildup of triglycerides and other lipids in liver cells. It is therefore linked to an increase in the susceptibility to developing diabetes mellitus and cardiovascular diseases. Several interventions exist regarding its management, but the availability of natural sources through diet will be a benefit in dealing with the disorder due to the immensely growing dependence of the population worldwide on natural sources owing to their ability to treat the root cause of the disease. Anthocyanins (ACNs) are naturally occurring polyphenolic pigments that exist in the form of glycosides, which are the glucosides of anthocyanidins and are produced from flavonoids via the phenyl propanoid pathway. To understand their mode of action in NAFLD and their therapeutic potential, the literature on in vitro, in vivo, and clinical trials on naturally occurring ACN-rich sources was exhaustively reviewed. It was concluded that ACNs show their potential in the treatment of NAFLD through their antioxidant properties and their efficacy to control lipid metabolism, glucose homeostasis, transcription factors, and inflammation. This led to the conclusion that ACNs possess efficacy in the amelioration of NAFLD and the various features associated with it. However, additional clinical trials are required to justify the potential of ACNs in NAFLD.


Assuntos
Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Antocianinas/farmacologia , Antocianinas/uso terapêutico , Antocianinas/metabolismo , Obesidade/complicações , Obesidade/metabolismo , Obesidade/patologia , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Compostos Fitoquímicos/metabolismo , Fígado/metabolismo , Fígado/patologia
6.
Mol Nutr Food Res ; 68(6): e2300583, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38389156

RESUMO

SCOPE: Piper excelsum (kawakawa) has a history of therapeutic use by Maori in Aotearoa New Zealand. It is currently widely consumed as a beverage and included as an ingredient in "functional" food product. Leaves contain compounds that are also found in a wide range of other spices, foods, and medicinal plants. This study investigates the human metabolism and excretion of kawakawa leaf chemicals. METHODS AND RESULTS: Six healthy male volunteers in one study (Bioavailability of Kawakawa Tea metabolites in human volunteers [BOKA-T]) and 30 volunteers (15 male and 15 female) in a second study (Impact of acute Kawakawa Tea ingestion on postprandial glucose metabolism in healthy human volunteers [TOAST]) consume a hot water infusion of dried kawakawa leaves (kawakawa tea [KT]). Untargeted Liquid Chromatography-Tandem Mass spectrometry (LC-MS/MS) analyses of urine samples from BOKA-T identified 26 urinary metabolites that are significantly associated with KT consumption, confirmed by the analysis of samples from the independent TOAST study. Seven of the 26 metabolites are also detected in plasma. Thirteen of the 26 urinary compounds are provisionally identified as metabolites of specific compounds in KT, eight metabolites are identified as being derived from specific compounds in KT but without resolution of chemical structure, and five are of unknown origin. CONCLUSIONS: Several kawakawa compounds that are also widely found in other plants are bioavailable and are modified by phase 1 and 2 metabolism.


Assuntos
Compostos Fitoquímicos , Piper , Humanos , Cromatografia Líquida , Piper/metabolismo , Folhas de Planta , Espectrometria de Massas em Tandem , Compostos Fitoquímicos/metabolismo
7.
J Ethnopharmacol ; 326: 117922, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38403004

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Kidney problems are becoming more common globally and are considered a major health issue in the modern world with high mortality rate. Polyalthia longifolia (Sonn.) Thwaites is a tropical ethnomedicinal plant used to treat various diseases like diabetes, hypertension and urinary disorders and possess antioxidant and anti-inflammatory properties. AIM OF THE STUDY: This study aimed to investigate the phytochemical composition of 70% ethanolic leaf extract of Polyalthia longifolia (Sonn.) Thwaites (PL) and evaluates its nephroprotective effects against cisplatin-induced nephrotoxicity in Wistar rats. MATERIALS AND METHODS: The leaves of PL were extracted with 70% ethanol and performed the phytochemical profiling using Liquid Chromatography-Mass Spectrometry (LC-MS). The nephroprotective effect of PL leaf extract was evaluated at three doses (150, 300 and 600 mg/kg, p.o.) for 14 days against cisplatin toxicity (16 mg/kg, i.p., once) in male Wistar rats. Body and kidney weight indices, kidney function markers and lipid profile markers in serum, and oxidative stress markers in kidney tissue were performed along with the histopathological analysis of kidney. RESULTS: The LC-MS chromatograph confirmed the presence of various phytocompounds include N-Methylhernagine (aporphine alkaloid), 4-Acetamidobutanoic acid (gamma amino acid) and choline, etc. in the PL leaf extract. Exposure of cisplatin (16 mg/kg, i.p., once only) to the animals significantly elevated the levels of kidney functional markers (i.e. serum urea, uric acid, creatinine) and the lipid markers (triglyceride and total cholesterol) in blood circulation with depletion of serum albumin which were reversed by the therapy of PL leaf extract (150, 300 and 600 mg/kg) in dose-dependent manner. The altered level of body and kidney weight in cisplatin treated group was also restored by the therapy. PL leaf extract effectively improved the antioxidant defense system of kidney at all doses by restoring the levels of tissue glutathione, superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase with the dose-dependent reduction of lipid peroxidation against cisplatin-induced renal oxidative stress. The histopathological observations also showed the significant recovery in cellular morphology after PL treatment when compared to the cisplatin toxicity group. The highest dose 600 mg/kg of PL leaf extract showed more pronounced renal recovery (p < 0.001) followed by other two doses, which was similar to the silymarin treatment group (a reference drug) against nephrotoxicity. CONCLUSION: The results of this study revealed the nephroprotective effects of PL leaves against cisplatin-induced nephrotoxicity by reversing the level of biochemical markers and mitigating oxidative stress as well as improving the architecture of renal tissues. This renal protection by PL might be due to the synergistic effect of its phytoconstituents and antioxidant efficacy.


Assuntos
Cisplatino , Polyalthia , Ratos , Animais , Cisplatino/toxicidade , Antioxidantes/uso terapêutico , Ratos Wistar , Estresse Oxidativo , Rim , Etanol/farmacologia , Creatinina , Extratos Vegetais/uso terapêutico , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/metabolismo , Lipídeos/farmacologia
8.
Plant Physiol Biochem ; 207: 108350, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199026

RESUMO

Salt stress is a recognized annihilating abiotic stress that has a significant impact on agricultural and horticulture crop productivity. Plant development faces three distinct dangers as a result of salt stress: oxidative stress, osmotic stress, and ionic toxicity. It has been shown that plants can forecast diurnal patterns using the circadian clock; moreover, they can manage their defensive mechanism for the detoxification of reactive oxygen species (ROS). Circadian rhythmicity in gene expression assembles transcription and translation feedback networks to govern plant shape, physiology, cellular and molecular activities. Both external and internal variables influence the systemic rhythm via input routes. The Malav Jyoti (MJ) and Delhi Green (DG) genotypes of spinach (Spinacia oleracea) were grown in the plant growth chamber. The chamber had an optimized temperature of 25 °C and humidity of 65% containing light emitting diode (LED) having Red: Blue: white (one side) and White fluorescent (other side) under salinity stress. The samples were collected on the basis of 4 h intervals of circadian hours (0 h, 4 h, 8 h and 12 h) during Day-10 and Day-20 of salt treatments. Under salt stress, the circadian and light-emitting diode-based strategy had a substantial influence on spinach's anti-oxidative responses, stomatal movement, CO2 assimilation, PS-I and II efficiency, phytochrome pigment efficiency, and photosynthesis. Based on the findings of the free radical scavenging enzyme tests, the photoperiodic hours for the proteome analysis were set to 11 am and 3 pm on Day-20. When compared to white fluorescent, this study found that LED has the capacity to influence the entrainment cues of the circadian clock in the cultivation of salt-sensitive spinach genotypes. According to our findings, changing the cellular scavenging mechanism and chloroplast proteome has increased the survival rate of spinach genotypes under LED when compared to white fluorescent.


Assuntos
Proteoma , Spinacia oleracea , Spinacia oleracea/genética , Spinacia oleracea/metabolismo , Proteoma/metabolismo , Cloroplastos/metabolismo , Estresse Fisiológico , Estresse Salino , Plantas/metabolismo , Compostos Fitoquímicos/metabolismo , Salinidade
9.
Life Sci ; 340: 122461, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38286208

RESUMO

Heavy metals are ubiquitous environmental toxicants that have been known to have a serious effect on human and animal health. Aluminum (Al) is a widely distributed metal in nature. Al exposure has a detrimental impact on human fertility. This review focused on Al-induced male reproductive toxicity and the potential therapeutic approaches with some phytochemicals. Data from the literature showed that Al exposure is accompanied by a drastic decline in blood levels of FSH, LH, and testosterone, reduced sperm count, and affected sperm quality. Al exposure at high levels can cause oxidative stress by increasing ROS and RNS production, mediated mainly by downregulating Nrf2 signaling. Moreover, several investigations demonstrated that Al exposure evoked inflammation, evidenced by increased TNF-α and IL-6 levels. Additionally, substantial evidence concluded the key role of apoptosis in Al-induced testicular toxicity mediated by upregulating caspase-3 and downregulating Bcl2 protein. The damaging effects of Al on mitochondrial bioenergetics are thought to be due to the excessive generation of free radicals. This review helps to clarify the main mechanism involved in Al-associated testicular intoxication and the treatment strategy to attenuate the notable harmful effects on the male reproductive system. It will encourage clinical efforts to target the pathway involved in Al-associated testicular intoxication.


Assuntos
Alumínio , Sêmen , Animais , Masculino , Humanos , Alumínio/toxicidade , Sêmen/metabolismo , Testículo , Estresse Oxidativo , Antioxidantes/farmacologia , Intoxicação por Metais Pesados/metabolismo , Reprodução , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/metabolismo
10.
J Sci Food Agric ; 104(4): 2272-2283, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-37947475

RESUMO

BACKGROUND: Dietary interventions are crucial in modulating inflammation in humans. Strawberries are enjoyed by people of different ages as a result of their attractive phenotype and taste. In addition, the active compounds in strawberries may contribute to the reduction of inflammation. When developing new strawberry cultivars to address agricultural and environmental threats, the bioactivity of strawberries must be improved to maintain their health benefits. RESULTS: We determined the phytochemical contents of extracts from a new Korean strawberry cultivar, with the CN7 cultivar extract possessing the highest total polyphenol and flavonoid contents compared to the CN5 and Seolhyang cultivar extracts. The new Korean strawberry cultivars reduced the expression of inflammatory-related genes in lipopolysaccharide (LPS)-induced RAW264.7 cells via the nuclear factor-kappa B signaling pathway, indicating an anti-inflammatory effect. The CN7 cultivar showed greater bioactivity potential and the highest ellagic acid content; hence, we assessed the effect of the CN7 cultivar in an LPS-stimulated mouse model. The CN7 cultivar treatment demonstrated its effectiveness in reducing inflammation via the downregulation of inflammatory cytokines secretion and gene expression. CONCLUSION: The results obtained in the present study have revealed the observable differences of the newly developed strawberry cultivars with Seolhyang in mitigating inflammation induced by LPS. The enhanced phytochemical content of the CN7 cultivar extract may contribute to its improved anti-inflammatory effect. Therefore, it is crucial to maintain the nutritive benefits of strawberry during the development of new cultivation. © 2023 Society of Chemical Industry.


Assuntos
Fragaria , Animais , Camundongos , Humanos , Fragaria/química , Lipopolissacarídeos , Frutas/química , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/metabolismo , Compostos Fitoquímicos/metabolismo , Extratos Vegetais/análise , Anti-Inflamatórios/metabolismo , Macrófagos , República da Coreia
11.
J Ethnopharmacol ; 322: 117557, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38072291

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: In Morocco carob fruits are used traditionally to treat hypercholesterolemia, diabetes and related diseases. AIMS: This study was designed to evaluate the hypolipidemic activity of Ceratonia siliqua green pods extract and its fractions in Triton WR-1339 and high fat/cholesterol diet (HFCD) induced hyperlipidemia mice, as well as their ability to prevent lipoproteins oxidation in vitro. MATERIALS AND METHODS: High performance liquid chromatography (HPLC) analysis was used to determine the phenolic composition of the immature carob pods extract (HWCE). Antioxidant activities were evaluated using the DPPH radical scavenging test as well as MDA measurement in oxidized lipoprotein rich plasma. Plasma lipids, glucose and biliary total cholesterol, as well as lipids level in liver and feces, were analyzed. The acute oral toxicity was performed in mice single dosed with the HWCE at 2000 and 5000 mg/kg body weight. RESULTS: HPLC analysis shows that gallic acid is the main phenolic compound in the HWCE. The acute oral toxicity assessment revealed that the HWCE is not toxic (LD50 is greater than 5000 mg/kg body weight). In the acute hypolipidemic study, mice treated with the HWCE and its fractions exhibited a significant (P < 0.001) reduction in plasma total cholesterol (TC), triglycerides (TG) and low density lipoprotein-cholesterol (LDL-C) levels. Importantly, immature carob aqueous extract was more effective in lowering mice hypercholesterolemia than its fractions. Indeed, mice fed the HFCD for 12 weeks showed a significant raise in plasma TC, TG and LDL-C, as well as in hepatic and fecal TC and TG levels. The HWCE at 100 and 200 mg/kg body weight significantly (P < 0.001) reversed the plasmatic levels of these lipid parameters, increased plasma HDL-C level, reduced hepatic lipids accumulation, but increased cholesterol level in the bile and fecal lipids excretion. The HWCE decreased also the atherogenic index, the LDL-C/HDL-C ratio and plasma glucose level after 12 weeks' experiment. On the other hand, the HWCE was more effective in preventing mice lipoprotein-rich plasma oxidation than its fractions, with a concentration-dependent manner. CONCLUSION: C. siliqua green fruits extract could be effective in preventing atherosclerosis and related cardiovascular complications through the inhibition of lipoprotein oxidation and cholesterol clearance.


Assuntos
Aterosclerose , Fabaceae , Galactanos , Hipercolesterolemia , Hiperlipidemias , Mananas , Gomas Vegetais , Camundongos , Animais , Hipercolesterolemia/tratamento farmacológico , Hipercolesterolemia/etiologia , LDL-Colesterol , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química , Metabolismo dos Lipídeos , Hiperlipidemias/tratamento farmacológico , Triglicerídeos/metabolismo , Fígado , Lipoproteínas , Aterosclerose/tratamento farmacológico , Peso Corporal , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Compostos Fitoquímicos/metabolismo
12.
Plant Physiol Biochem ; 206: 108283, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38142664

RESUMO

Kale (Brassica oleracea L. var. sabellica L.), kohlrabi (Brassica oleracea L. var. gongylodes L.) and wheat (Triticum aestivum L. cv. Bancal) microgreens were cultivated in presence of selenium 20 µmol L-1 as sodium selenite and sodium selenate mixture. The influence of this biofortification process was evaluated in terms of biomass production, total Se, macro- and micronutrients concentration, polyphenols, antioxidant activity, chlorophylls and carotenoids levels and total soluble proteins content. The results obtained have shown a significant concentration of total Se in the biofortified microgreens of kale (133 µg Se·g-1 DW) and kohlrabi (127 µg Se·g-1 DW) higher than that obtained for wheat (28 µg Se·g-1 DW). The Se uptake in all the species did not produce oxidative damage to the plants reflected in the bioactive compounds, antioxidant capacity or pigments concentration. These Se-enriched microgreens may contribute to the recommended intake of this nutrient in human diet as to overcome Se-deficiency.


Assuntos
Brassica , Selênio , Humanos , Selênio/farmacologia , Selênio/metabolismo , Biofortificação/métodos , Antioxidantes/metabolismo , Brassica/metabolismo , Compostos Fitoquímicos/metabolismo , Nutrientes
13.
Int J Mol Sci ; 24(22)2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38003497

RESUMO

Pseudo-cereals such as buckwheat (Fagopyrum esculentum) are valid candidates to promote diet biodiversity and nutrition security in an era of global climate change. Buckwheat hulls (BHs) are currently an unexplored source of dietary fibre and bioactive phytochemicals. This study assessed the effects of several bioprocessing treatments (using enzymes, yeast, and combinations of both) on BHs' nutrient and phytochemical content, their digestion and metabolism in vitro (using a gastrointestinal digestion model and mixed microbiota from human faeces). The metabolites were measured using targeted LC-MS/MS and GC analysis and 16S rRNA gene sequencing was used to detect the impact on microbiota composition. BHs are rich in insoluble fibre (31.09 ± 0.22% as non-starch polysaccharides), protocatechuic acid (390.71 ± 31.72 mg/kg), and syringaresinol (125.60 ± 6.76 mg/kg). The bioprocessing treatments significantly increased the extractability of gallic acid, vanillic acid, p-hydroxybenzoic acid, syringic acid, vanillin, syringaldehyde, p-coumaric acid, ferulic acid, caffeic acid, and syringaresinol in the alkaline-labile bound form, suggesting the bioaccessibility of these phytochemicals to the colon. Furthermore, one of the treatments, EC_2 treatment, increased significantly the in vitro upper gastrointestinal release of bioactive phytochemicals, especially for protocatechuic acid (p < 0.01). The BH fibre was fermentable, promoting the formation mainly of propionate and, to a lesser extent, butyrate formation. The EM_1 and EC_2 treatments effectively increased the content of insoluble fibre but had no effect on dietary fibre fermentation (p > 0.05). These findings promote the use of buckwheat hulls as a source of dietary fibre and phytochemicals to help meet dietary recommendations and needs.


Assuntos
Fagopyrum , Humanos , Fagopyrum/metabolismo , Cromatografia Líquida , RNA Ribossômico 16S/metabolismo , Espectrometria de Massas em Tandem , Fibras na Dieta/metabolismo , Compostos Fitoquímicos/metabolismo
14.
Curr Top Med Chem ; 23(28): 2621-2639, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37855294

RESUMO

AIMS: The purpose of this review was to emphasize the nutritional value, and pharmacological and phytochemical properties of Salvia hispanica, as well as its toxicological evaluation. BACKGROUND: Salvia hispanica L. (S. hispanica), also called chia seeds, is an annual herbaceous plant belonging to the family Lamiaceae. It is a species of medicinal and dietary plant used since ancient times by the Maya and Aztecs. Its product is an indehiscent dry fruit that is commonly called a seed. It is utilized for its health benefits and uses in cooking. OBJECTIVE: The study aimed to investigate the pharmacological, phytochemical, and toxicological properties of S. hispanica seeds. The research also attempted to explore and compile all existing knowledge and data on these seeds' nutritional value and medical applications. MATERIALS AND METHODS: The current review was conducted using numerous scientific databases, including Science Direct, Scopus, PubMed, Google Scholar, etc. The correct plant name was verified from plantlist.org. The results of this search were interpreted, analyzed, and documented based on the obtained bibliographic information. RESULTS: S. hispanica is a pseudo cereal that is consumed by the world's population because of its preventive, functional, and antioxidant characteristics, attributable to the presence of lipids, dietary fiber, protein, phenolic compounds, vitamins, and minerals. According to research, chia offers hypoglycemic, antimicrobial, anticancer, anti-inflammatory, antioxidant, antihypersensitive, anti-obesity, and cardioprotective properties. Chia consumption has grown because of its favorable benefits on obesity, cardiovascular disease, diabetes, and several forms of cancer. These advantages are mostly due to the high concentration of essential fatty acids, dietary fiber, antioxidants, flavonoids, anthocyanins, vitamins, carotenoids, and minerals found in this seed. Based on the beneficial components, chia seeds have enormous potential in the areas of health, food, animal feed, medicines, and nutraceuticals. Finally, toxicological investigations have indicated the greater doses of chia seed extracts as safe. CONCLUSION: The current evaluation has focused on the distribution, chemical composition, nutritional value, and principal uses of S. hispanica in order to determine future research requirements and examine its pharmacological applications through clinical studies.


Assuntos
Salvia hispanica , Salvia , Animais , Antioxidantes/farmacologia , Antioxidantes/química , Etnofarmacologia , Salvia/química , Salvia/metabolismo , Antocianinas , Minerais/metabolismo , Vitaminas/metabolismo , Fibras na Dieta/metabolismo , Valor Nutritivo , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/metabolismo
15.
J Agric Food Chem ; 71(41): 14989-15002, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37792742

RESUMO

Although the induction of cytochrome P450 monooxygenases involved in insect detoxification has been well documented, the underlying regulatory mechanisms remain obscure. In Spodoptera litura, CYP321A subfamily members were effectively induced by exposure to flavone, xanthotoxin, curcumin, and λ-cyhalothrin, while knockdown of the CYP321A genes increased larval susceptibility to these xenobiotics. Homology modeling and molecular docking analyses showed that these four xenobiotics could stably bind to the CYP321A enzymes. Furthermore, two transcription factor genes, CncC and MafK, were significantly induced by the xenobiotics. Knockdown of CncC or MafK reduced the expression of four CYP321A genes and increased larval susceptibility to the xenobiotics. Dual-luciferase reporter assays showed that cotransfection of reporter plasmids carrying the CYP321A promoter with CncC and/or MafK-expressing constructs significantly magnified the promoter activity. These results indicate that the induction of CYP321A subfamily members conferring larval detoxification capability to xenobiotics is mediated by the activation of CncC and MafK.


Assuntos
Inseticidas , Piretrinas , Animais , Spodoptera , Simulação de Acoplamento Molecular , Proteínas de Insetos/metabolismo , Piretrinas/metabolismo , Larva , Compostos Fitoquímicos/metabolismo , Inseticidas/farmacologia , Inseticidas/metabolismo
16.
Molecules ; 28(15)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37570713

RESUMO

Annona muricate is a tropical plant that is well-known for its edible fruit of therapeutic interest. LCMS/MS analyses were applied to identify phytoconstituents of the ethanolic extract of the whole fruits and the aqueous extract of the edible fruit part, in addition to the investigation of their anticancer properties against Ehrlich ascites carcinoma (EAC) in male albino mice. LCMS/MS analyses resulted in the identification of 388 components, representing a wide array of classes of compounds, including acetogenins as the major constituents, alkaloids, flavonoids, and phenolics. Among them, four compounds were tentatively characterized as new compounds (1-4), including an acid derivative, protocatechuic-coumaroyl-quinic acid (1), and three flavonoid derivatives, dihydromyricetin galloyl hexoside (2), apigenin gallate (3), and dihydromyricetin hexouronic acid hexoside (4). Induction with EAC cells resulted in abnormalities in the gene expression of pro-apoptotic genes (Bax and caspase-3) and anti-apoptotic gene (Bcl-2) in the tumor mass. Moreover, microscopic, histopathological, and immune-histochemical examinations of the tumor mass and liver tissues exhibited extensive growth of malignant Ehrlich carcinoma cells and marked hydropic degeneration of hepatocytes and infiltration by tumor cells to liver tissue with marked inflammatory reaction. These abnormalities were markedly ameliorated aftertreatment of EAC mice with A. muricata extracts.


Assuntos
Annona , Camundongos , Animais , Annona/química , Acetogeninas/química , Extratos Vegetais/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/metabolismo
17.
Nutrients ; 15(15)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37571393

RESUMO

During aging, several tissues and biological systems undergo a progressive decline in function, leading to age-associated diseases such as neurodegenerative, inflammatory, metabolic, and cardiovascular diseases and cancer. In this review, we focus on the molecular underpinning of senescence and neurodegeneration related to age-associated brain diseases, in particular, Alzheimer's and Parkinson's diseases, along with introducing nutrients or phytochemicals that modulate age-associated molecular dysfunctions, potentially offering preventive or therapeutic benefits. Based on current knowledge, the dysregulation of microglia genes and neuroinflammation, telomere attrition, neuronal stem cell degradation, vascular system dysfunction, reactive oxygen species, loss of chromosome X inactivation in females, and gut microbiome dysbiosis have been seen to play pivotal roles in neurodegeneration in an interactive manner. There are several phytochemicals (e.g., curcumin, EGCG, fucoidan, galangin, astin C, apigenin, resveratrol, phytic acid, acacetin, daucosterol, silibinin, sulforaphane, withaferin A, and betulinic acid) that modulate the dysfunction of one or several key genes (e.g., TREM2, C3, C3aR1, TNFA, NF-kb, TGFB1&2, SIRT1&6, HMGB1, and STING) affected in the aged brain. Although phytochemicals have shown promise in slowing down the progression of age-related brain diseases, more studies to identify their efficacy, alone or in combinations, in preclinical systems can help to design novel nutritional strategies for the management of neurodegenerative diseases in humans.


Assuntos
Encefalopatias , Doenças Neurodegenerativas , Humanos , Idoso , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/prevenção & controle , Doenças Neurodegenerativas/metabolismo , Encéfalo/metabolismo , Envelhecimento , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Compostos Fitoquímicos/metabolismo
18.
Discov Med ; 35(177): 590-611, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37553312

RESUMO

BACKGROUND: Herbal medicinal products containing Vaccinium myrtillus L. (bilberry) fruits and fruit extracts are widely available in the market. Although bilberry leaves and stems are considered as bio-waste, they contain much higher levels of phenolic compounds than fruits. The study aimed to investigate the antimicrobial and anticancer potential of aerial part extracts from Vaccinium myrtillus L. (V. myrtillus, VM) plants harvested at high altitudes in Armenian landscape and characterize the bioactive phytochemicals. MATERIAL AND METHODS: For evaluation of antioxidant properties, chemical-based tests (total phenolic and flavonoid content, and antiradical activity in 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) tests) and cellular antioxidant activity (CAA) assay were applied. Genotoxicity and anticancer properties of the extract alone and in combination with fluorouracil were explored in human cancer and normal cell lines. Antibacterial properties of V. myrtillus extract alone and in combination with antibiotics, as well as their effect on proton-flux rate through cell membrane were explored on bacterial strains. The characterization of active phytochemicals was done using Liquid Chromatography-Quadrupole-Orbitrap High-Resolution Mass Spectrometry (LC-Q-Orbitrap HRMS). RESULTS: The V. myrtillus aerial part extract demonstrated promising antioxidant properties in all tests. The selective cytotoxic activity was documented against various cancer cell lines (human colon adenocarcinoma (HT29), human breast cancer (MCF-7) and human cervical carcinoma (HeLa)), while it did not inhibit the growth of tested human normal primary renal mixed epithelial cells (HREC) even at 10-fold higher concentrations. The extract did not have genotoxic properties in comet assay making it a potential source for the development of anticancer preparations. The investigated extract did not directly inhibit the growth of Escherichia coli (E. coli) and Salmonella typhimurium (S. typhimurium) strains at up to 1 mg/mL concentration. However, V. myrtillus extract enhanced the kanamycin intake and increased its efficiency against E. coli strain. The phytochemical characterization of the extract showed the presence of different groups of phenolics. CONCLUSIONS: Based on obtained data, we suggest the aerial parts of the V. myrtillus plant as an alternative source of bioactive natural products for food supplements, nutraceuticals, functional foods and medicine.


Assuntos
Adenocarcinoma , Neoplasias do Colo , Vaccinium myrtillus , Humanos , Vaccinium myrtillus/química , Vaccinium myrtillus/metabolismo , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/metabolismo , Antibacterianos/farmacologia , Escherichia coli , Fenóis/análise , Fenóis/química , Fenóis/metabolismo , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Compostos Fitoquímicos/metabolismo , Extratos Vegetais/farmacologia
19.
Molecules ; 28(13)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37446686

RESUMO

In this study, we investigated in vitro the potential of Trichoderma harzianum to produce bioactive secondary metabolites that can be used as alternatives to synthetic compounds. The study focused on analyzing two extracts of T. harzianum using ethyl acetate and n-butanol solvents with different polarities. The extracts were examined using phytochemical analysis to determine the content of polyphenols, flavonoids, tannins, and alkaloids. Thin-layer chromatography (TLC) and Gas chromatography-mass spectroscopy (GC-MS) analysis were used to profile volatile organic metabolites (VOCs) present in the extracts. Furthermore, the extracts were tested for their antifungal ability using the poison food technique. For measuring antioxidant activity, the 1,1-diphenyl-2-picryl-hydrazyl (DPPH) test was used. Trichoderma harzianum was shown to have a significantly high content of tannins and alkaloids, with a noticeable difference between the two extracts. GC-MS analysis identified 33 potential compounds with numerous benefits that could be used in agriculture and the medicinal industry. Moreover, strong antifungal activity was identified against Sclerotinia sclerotiorum by 94.44%, Alternaria sp. by 77.04%, and Fusarium solani by 51.48; similarly, the IC50 of antioxidant activity was estimated for ethyl acetate extract by 71.47% and n-butanol extract by 56.01%. This leads to the conclusion that Trichoderma harzianum VOCs play a significant role as an antifungal and antioxidant agent when taking into account the advantageous bioactive chemicals noted in the extracts. However, to our knowledge, this is the first study in Algeria presenting detailed phytochemical analysis and GC-MS profiling of Trichoderma harzianum for two extracts, ethyl acetate and n-butanol.


Assuntos
Antifúngicos , Trichoderma , Antifúngicos/química , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , 1-Butanol , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/metabolismo , Taninos/metabolismo , Extratos Vegetais/química , Trichoderma/metabolismo
20.
Molecules ; 28(14)2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37513242

RESUMO

Aflatoxin B1 is a secondary metabolite with a potentially devastating effect in causing liver damage in broiler chickens, and this is mainly facilitated through the generation of oxidative stress and malonaldehyde build-up. In the past few years, significant progress has been made in controlling the invasion of aflatoxins. Phytochemicals are some of the commonly used molecules endowed with potential therapeutic effects to ameliorate aflatoxin, by inhibiting the production of reactive oxygen species and enhancing intracellular antioxidant enzymes. Experimental models involving cell cultures and broiler chickens exposed to aflatoxin or contaminated diet have been used to investigate the ameliorative effects of phytochemicals against aflatoxin toxicity. Electronic databases such as PubMed, Science Direct, and Google Scholar were used to identify relevant data sources. The retrieved information reported on the link between aflatoxin B1-included cytotoxicity and the ameliorative potential/role of phytochemicals in chickens. Importantly, retrieved data showed that phytochemicals may potentially protect against aflatoxin B1-induced cytotoxicity by ameliorating oxidative stress and enhancing intracellular antioxidants. Preclinical data indicate that activation of nuclear factor erythroid 2-related factor 2 (Nrf2), together with its downstream antioxidant genes, may be a potential therapeutic mechanism by which phytochemicals neutralize oxidative stress. This highlights the need for more research to determine whether phytochemicals can be considered a useful therapeutic intervention in controlling mycotoxins to improve broiler health and productivity.


Assuntos
Aflatoxinas , Animais , Aflatoxinas/toxicidade , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Aflatoxina B1/toxicidade , Fígado , Galinhas/metabolismo , Estresse Oxidativo , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...